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A nonviscous fluid, completely filling a tube rotating about its horizontal axis, contains a suspension of
macroscopic particles. The particles are observed to distribute themselves spontaneously in bands distributed
periodically along the axis, with a band separation dependent only on the tube radius and length. In many
cases, the bands oscillate periodically between two interleaving patterns. We explain this banding phenomenon
as arising from the excitation of inertial standing waves in the rotating fluid.
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In a recent paper, Lee and Ladt]] described the axial crystals and bubbles, the bands were very narrow and well
banding of non-Brownian particles suspended in a rotatinglefined[4].
viscous fluid at Reynolds number Ré&. Their geometry The experiments were photographed and recorded on
involved a cylindrical tube of radiu®k, completely filled video tape for subsequent analysis. Figure 1 shows the bands
with fluid, rotating about a horizontal axis with angular ve- formed by plexiglass cylinders with a band forming at one
locity 2. A mechanism involving a balance between gravi-end of the tube, but not at the other. In general, the end could
tational, viscous, and centrifugal forces was shown to causeither be at the center of a band or halfway between two
the particles to segregate into axial bands with separation bands, there being no observable preference between the two
independent of), the viscosity of the fluid, and the geom- cases. This resulted in the existence of two degenerate inter-
etry of the particles. For two types of boundary conditions afeaved patterns for each value bf When bubbles were
the tube walls, band separations/of1.8R and 3.R were  present together with particles, bubble bands interleaved
found; these were compared with experiments by Matton with particle bands. In addition, we found a different oscil-
al. [2] on suspensions of 100m silica particles in glycerol latory phenomenon in which the bands alternated periodi-
solutions, for whichA ~2.6R. Axial banding of larger par- cally between the two possible patterns. An example of this
ticles in completely filled rotating tubes of less viscous fluidsoscillatory behavior is shown in Fig. 2.
with Re>1 has also been reported receri®y-5], with val- The band spacingd were measured as a function of the
ues of A between 3.5 andR. tube lengthL after the photographs had been digitized. The
In this paper, we present an experimental study and aresults for a large number of experiments using different
explanation of the banding of much larger particles in rotattypes of particles and tubes are shown in Fig. 3, in which
ing fluids of negligible viscosity, with Re of order 100—300. A/R is plotted as a function of/R. Particles of different
An example is shown in Fig. 1. Previous observatiph$]  types, indicated on the figure by different symbols, all lie on
on the same system showed that the banding is independeiie same universal plot, consisting of a set of straight lines
of O and occurs for a wide range of particle types and sizegiepresented by =nA/2, wheren=2,3 ... . This appears
In contrast to the predictions of Lee and Ladd, banding  similar to other standing wave phenomena; except that for
was also observed for negatively buoyant particles, i.e., aiedd n, bands occur at one end or the other as in Fig. 1,
bubbles. The experiments reported here were carried out iwhereas for even, the bands occur either at both ends or at
glass tubes of internal radR between 12.8 and 22.9 mm, neither, as in Fig. 2. This suggests the bands to be at intervals
rotating with 0~ 6 rad/sec. This rotation is fast enough to of A, not the usualA/2, which will be explained by the
lift the particles off the bottom of the tulfer top, in the case theoretical analysis. It can also be seen in Fig. 3 that
of bubbles, but not large enough to centrifuge them to theincreases linearly witlL until a limiting value of about.
wall. Otherwise, its precise value does not seem to be impor=4R is reached, at which point it jumps to the next value of
tant. The length of the tube was varied by means of a teflom. Oscillations between the two different patter(isg. 2)
piston. The tubes were completely filled with water or dilute
glycerol solutions. Monodisperse collections of nylon, poly-
styrene, and plexiglass particles, air bubbles and polydis/
perse dendritic crystals were suspended in the rotating fluid
A minimum number of about ten particles per band was
necessary for banding to occur; otherwise the particles dig
not occupy preferential positions along the tube. Increasing
the viscosity by up to 20% in dilute glycerol solutions was
found to have no effect on the results. In some cases with FiG. 1. Example of bands formed by 220 plexiglass cylinders at
a rotation rate() =9.4 rad/sec in a 2.57 cm diameter tube 11.2 cm
long. Notice that there is a band at the end of the tube on the left,
*Electronic address: sglipson@physics.technion.ac.il but the right end is half a period distant from the nearest band.
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FIG. 2. Pictures of the bands at time intervals of 3.5 sec to
illustrate the oscillation phenomenon, with 3 mm polystyrene balls
in a tube of diameter 4.45 cm &=5.5 rad/sec.
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FIG. 3. Dependence of the band separation on the length of the
tube, scaled to the tube radius. The different types of particle are
indicated by different symbols. The filled symbols indicate oscillat-
ing states.

During the oscillations, particles from adjacent bands meet at
the midpoint where they form a new band.

The observations in Fig. 3 show that a standing wave
phenomenon is involved, so that although the mechanism
proposed by Lee and Ladd] might be involved in initially
promoting banding, it cannot be dominant since the amplifi-
cation peak ak = 3.8R is too broad to support a single-mode
type of behaviof6]. Instead, we suggest that interaction be-
tween the particles and the rotating fluid excites resonant
inertial waves in the fluid7,8] whose frequency is close
to or equal to{). The particles then accumulate in axial
regions where the combined flow pattern of rotating fluid and
wave is most consistent with the normal rotational motion
resulting from the drag of the rotating fluid and the down-
ward force of gravity.

Current interest in inertial waves is mainly limited to geo-
physical and atmospheric physi¢9], although the basic

ideas have been known for 120 ye4r§. In the frame of
were observed in many cases, with periods in the rar,géeference rotating with angular velocify (where the main

10-30 sec.

Experiments were also carried out in which both indi-
vidual motion and collective particle motion were observed
from the end of the tube. In the case of a single particle, an
off-center neutral point on th& axis was found where it
could remain in equilibrium between the drag forces and
gravity, or around which stable circulation took place. We
note that this equilibrium point was shown by Lee and Ladd
[1] to be unstable in the low Re regime, but particles would
remain there for long periods. In the many-particle case,
when the bands formed, the particles moved within a fairly,
well-defined torus around the neutral point, as can be seen
Fig. 4(a). Their angular velocity, measured by timing se-
lected painted particles, was found to be in the rang
0.95-1.00Q). However, during oscillations between modes
the simple rotary motion of the particles ceased, as in Fig
4(b). At the same time, we could observe the particle motio
from the side and see that the particles developed an orga-
nized roll-like motion in which they appeared to be repelled?®
from the band at the bottom of the falling part of the cycle, ional
and return to join it during the rising part. This type of mo-
tion can also be discerned in the illustrations in Refl.
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d(pv)

V-(pv)=-—

body of the fluid is at re$f the Navier-Stokes equations are

ap
at’

@

——+V-V(pV)+2Q X pv+ QX (X pr)

ot

forces,

—Vp+pg+F.

p=p—3p(QX1)2=pg-r.

@

In this equation, the pressupeand the velocityy represent
l;S]erturbations to the rigid-body motion of the rotating fluid.
The vectorg is the gravitational acceleration, which rotates
at angular velocity- € in the rotating systent: represents a
driving force per unit volume due to the action of the sus-
npended particles on the fluid.
We simplify Eq.(2) by introducing a new pressure vari-
ble p including the effect of the centrifugal and gravita-
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FIG. 5. Properties of then=—1 inertial wave in the lab frame:
(a) The wave induced velocity in the planez= w/k. (b) The total
velocity V=v+QXr in the planez=w/k. (c) The velocityV in
the planex=0.

wheref(F) is a function of the driving force. For boundary

conditionsn-v=0 at the ends and curved surface=R) of

the cylinder, Eq(5) can lead to standing wave solutions.
Whenw=(), the resonant solutions of the homogeneous

equation(5) without the driving term are

E: Podm(yr)cogme— Qt)coskz, (6)

where k=y/\/§. However, inclusion of the driving term

FIG. 4. Photographs of particle distributions as seen from thé’"OUId be expected to alter this relationship.

end of a 5.58 cm diameter tube during oscillatiot®: when the The appropriate value of the azimuthal numberfor a

bands are cleares) when the bands are mixdtbast clear. Sev-  dravity-driven experiment isn=—1, since then the pattern

eral balls were painted black in order to measure the rotation spee@f the pressure wave in the rotating system will rotate with

Rotation is in the clockwise sense. angular velocity(Q) in a direction opposite to the rotation of

the cylinder. In the laboratory system, this pattern would

. . appear fixed when looked at from the end of the rotating

We fu_rther assume _the fluid, generally water, to be INCOM3 e, That is, the off-center fixed point of the rotating par-

pressible and linearize the problem by dropping the nonlins; P : :

v ¢ Th ¢ d E) t ticles in Fig. 4a) remains still.
earv-V(pv) term. These steps reduce Eg) to From Egs. (1), (4), and (6), the velocity components

v, V4,0, Can be found

d(pv) — 231 (yr

g +2Q X pv=—Vp+F. 4 vr:VO[Ji(yr)JrLY) sin(6+ Qt)coskz, @)

In the rotating systemE drives the system with a time de- vozvo[zji( yr)+ Ju w)}cos{ 6+ Qt)coskz,  (8)
yr

pendence~e . Eliminating the vectopv from Egs. (1)
and(4), and taking the time dependenee'“! for p, we get y
a wave equation fop. In cylindrical coordinates, 0,z, this uzzivo Ji(yr)sin(8+Qt)sinkz, 9
equation is
in which Vo=k?p,/ypQ. At z=0,L the boundary condi-
P o\ o tions are v,=0, giving k=nw/L and wavelength\
Ei( &ﬂ 17 p+( _ 40 )‘9 p—f(':) (55  =2L/n. At the curved surface of the cylinder,=0 atr
ror r '

I/ r?59? w? | 972 =R, giving the eigenvalue equation
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Ji(yR)=—23,(yR)/(yR). (10) do not have a solution for the wave equation with a driving
term, the general effect of a driving term dénfor a given
The first solution isyR=2.74, which leads to a wavelength y=2.74R will be to increase&. We can appreciate the effect
for the resonant waves=27/k=2m3/y=3.97R. of drag of the suspended particles by considering a simplified
In the nonrotating laboratory frame, the pressure and veforce F=— apv on the right-hand side of E@¢4). To lowest
locity of the wave field are given by Eg&)—(9) without the  order in«, this modifies the resonance condition to
Ot term in the angular dependence. The flow geometry in
the cross sectiom= 7/k of the tube is shown in Fig.(8). It 5
consists of a flow generally in the vertical direction witp Y=
maximum atr =0. For evenkz/ 7 the velocity is upwards,

while for odd_kz/w, it is downwards. Figure (5)_ shows _the when the tube length is decreased below its value for reso-
flow pattern in the laboratory frame, where this velocity has,gnce. the drag on the fluid caudet become larger than

beerll addEd to the f|°ta|:'°.”a' V.'EIO?@.X r. \tIJVe see th?ft the y/\/§, thus decreasing the band separatloas in Fig. 3.
result is a counterclockwise circulation about an off-center” | summary, the physical picture which emerges is that a

point (x5,0), wherexs>0 (<0) in the planes wherkez/m IS gianding inertial wave is excited by the reactive buoyant
odd (even. The longitudinal flowo, is maximum in the re- (500 exerted by the gravity-driven particles on the rotating
gions near the walls, and has opposite directions at top ang{,ig The velocity field of the excited wave, when added to
bottom as shown in Fig.(B). This pattern repeats periodi- e rigid-hody rotation of the fluid, leads to a velocity field
cally along thez axis, reversing sense every half wavelengthy, ot couples to the natural motion of a single particle in
\/2. The requirement that the flow pattern match the gravity,jterate nodes of the wave. This explains the fact that, for a
induced particle motion determines that the particles stabiliz%iven tube length, there are two degenerate standing wave

around alternate nodal planes, whje'g@(.), and determines patterns with band separation having a maximum value
the actual value of/,. Bubbles stabilize in the planes where ~4R, with the extraordinary pattern of skipped nodes, al-

xs<0. We have thus identified the banding peridbdhat we  ,45ygh the mechanism of the oscillations between them is
observe in the experiment with the wavelengthand not ot clear.

with \/2 as in an ordinary standing wave. Changing the sign
of V, provides an alternative degenerate solution in which We acknowledge useful discussions with Oded Regev and
“even” and “odd” are interchanged. The oscillations be- Amos Ori, and the technical assistance of Shmuel Hoida.
tween the modes presumably result from coupling betwee®ne of us(J.F) wishes to thank the Technion Physics De-
them, which so far we have ignored. partment for its kind hospitality during the completion of this
The situation described above in whidh=3.97/R~4Ris  work. The work was supported by the Minerva Center for
for the resonant case, where no driving term is present. Thiblon-linear Science and Technion Fund for Promotion of Re-
is the upper limit of the curves shown in Fig. 3. Although we search.
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